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SUMMARY

This paper demonstrates the use of shape-preserving exponential spline interpolation in a characteristic
based numerical scheme for the solution of the linear advective–diffusion equation. The results from this
scheme are compared with results from a number of numerical schemes in current use using test problems
in one and two dimensions. These test cases are used to assess the merits of using shape-preserving
interpolation in a characteristic based scheme. The evaluation of the schemes is based on accuracy,
efficiency, and complexity. The use of the shape-preserving interpolation in a characteristic based scheme
is accurate, captures discontinuities, does not introduce spurious oscillations, and preserves the
monotonicity and positivity properties of the exact solution. However, fitting exponential spline inter-
polants to the nodal concentrations is computationally expensive. Exponential spline interpolants were
also fitted to the integral of the concentration profile. The integral of the concentration profile is a
smoother function than the concentration profile. It requires less computational effort to fit an
exponential spline interpolant to the integral than the nodal concentrations. By differentiating the
interpolant, the nodal concentrations are obtained. This results in a more efficient and more accurate
numerical scheme. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: advective–diffusion equation; finite difference scheme; shape-preserving interpolation;
splines

1. INTRODUCTION

Mathematical model of the transport and fate of pollutants in aquatic systems are becoming
increasingly important tools in understanding, managing, and remediating these systems. The
success of these models depends on how well the physical processes in the aquatic system are
described by the mathematical equations and by accuracy and efficiency with which these
equations can be solved.
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Pollutant transport processes in rivers and coastal waters are usually simulated using the
advective–diffusion equation [1–4]. The advective–diffusion equation can be solved using a
variety of techniques, such as finite differences [5], finite elements [6], and the method of
characteristics [3]. Many of these schemes work well for smooth solutions but can produce
non-physical solutions in the vicinity of rapid changes in the solution [1,3,6–8]. Lower-order
numerical methods introduce artificial numerical viscosity or diffusion, which may be much
greater than the physical diffusion being modeled. Higher-order polynomial-based methods are
plagued by the generation of spurious oscillations or overshoots in the vicinity of steep
gradients in the profile. These oscillations are non-physical and may lead to an unstable
solution. Numerical methods should possess both higher-order accuracy and sharp resolution
of discontinuities without excessive smearing or the introduction of spurious oscillations in the
solutions.

The purpose of this paper is to present results from a numerical method similar to the
method of characteristics, for the solutions of the advective–diffusion equation in one and two
dimensions. The one- and two-dimensional advective–diffusion equation is solved using
quasi-characteristics. This is a family of schemes for solving partial differential equations
(PDEs) which only requires spatial interpolation. Shape-preserving exponential spline interpo-
lation is used to produce solutions that capture discontinuities with no spurious oscillations
and preserve the monotonicity and positivity properties of the exact solution. The authors
believe that the use of shape-preserving exponential spline interpolation in characteristic based
schemes has not been explored previously. This scheme will be compared with a number of
numerical schemes ranging from highly diffusive first-order upwind schemes, second-order
accurate schemes, monotone schemes, a third-order accurate scheme, and the fourth-order flux
corrected transport (FCT) scheme. The test cases are idealized but are severe and include one-
and two-dimensional pure advection problems.

In the next section, the quasi-characteristic formulation of the advective–diffusion equa-
tion is derived. In Section 3, suitable interpolation schemes that can be used in the quasi-
characteristics are discussed. The use of exponential spline interpolation in the quasi-
characteristic scheme is demonstrated in Section 4. In Section 5, the numerical scheme is used
to solve the advection equation in two-dimensions.

2. QUASI-CHARACTERISTIC EQUATIONS

Consider the one-dimensional linear advective–diffusion equation
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(x2 ; 05x5L, t� [0, T ] (1)

in which c is a scalar, u is the steady uniform fluid velocity, D is the constant diffusion
coefficient, x is the one-dimensional co-ordinate direction, and t is time. Equation (1) can be
written in the form

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 429–452



SHAPE-PRESERVING INTERPOLATION 431

(c
(t

=C
�

x, t,
(

(x
,
(2

(x2

�
c(x, t) (2)

where C is a linear operator independent of the temporal derivative. For Equation (1), C
involves two operators, C=LA+ LD, where the advection operator is LA= −u((/(x) and
the diffusion operator is LD= −D((2/(x2).

The exact solution to Equation (2) for any interior computational node at t+ Dt, given the
solution at time t, can be expressed by the following Taylor series:
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Substituting Equation (2) into the Taylor series yields

cn+1=exp(DtC)cn=exp(Dt(LA+LD))cn

=cn+Dt(LA+LD)cn+
Dt2

2
(LA

2 + (LALD+LDLA)+LD
2 )cn+ · · · (3)

Equation (3) represents a strategy for solving Equation (1). Various schemes can be used to
approximate exp(Dt(LA+LD)) to the desired accuracy. For example, Equation (3) can be
approximated by

cn+1:exp(DtLA) exp(DtLD)cn (4)

The order of applying the two processes is unimportant. There is no restriction on the
numerical schemes that can be used to solve the advection or diffusion operators. Any
combination of stable methods can be used for the separate steps. A Taylor series expansion
of Equation (4) reveals that it is only first-order accurate in time if LA and LD do not
commute, otherwise it is exact. Since Equation (1) is a constant coefficient problem, then LA

and LD commute and (4) is exact.
The first exponential exp[−uDt((/(x)] in (4) is known as a shift operator. For example,

consider the following Taylor series
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The quantity exp[−uDt((/(x)] has the effect of shifting the argument of the function from x
to x=x−uDt. Therefore, the analytical solution for the constant coefficient scalar advective–
diffusion equation is simply

cn+1=exp
�

DDt
(2

(x2

�
cj

n (5)

in which j=x−uDt. Expanding the diffusion operator using a Taylor series then
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Neglecting second- and higher-order terms
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is the final form of the first-order quasi-characteristics formulation of the advective–diffusion
equation. The advection step consists of taking the value of c(j=xj−uDt, t) and transferring
it to (xj, t+Dt). This is illustrated in Figure 1. Each value is then modified by the process of
diffusion over the time step, Dt. Because of its similarity to a characteristic, the straight line
describing the progress of the computation has been called a quasi-characteristic by Fenton [9].
For the constant coefficient problem, Equation (6) is also the solution to the characteristic
equations for the advective–diffusion equation. Otherwise, it is a first-order approximation
to the characteristics that are curved. For pure advection, this scheme is identical to semi-
Lagrangian advection schemes used in numerical weather prediction [10–14].

An unusual feature of this scheme is that, unlike most finite difference schemes, it separates
the processes of spatial approximation and time stepping. Equation (6) only requires spatial
interpolation of the concentration c j

n at x=j and the evaluation of the second-derivative at
the point j. Once the nodal values c j

n+1 have been estimated using Equation (6), the solution
evolves by interpolating these values and solving Equation (6) for the nodal concentrations at
the next time step, n+2. The major practical advantages of the use of interpolation schemes
are that they maintain their accuracy even for non-uniform grids. This is not generally the case
for finite difference schemes. For example, the SHARP scheme is a stable third-order scheme
for the solution of the advective–diffusion equation on a uniform grid, otherwise it is only
first-order accurate [15]. In addition, the quasi-characteristic scheme is valid for the full range
of Peclet numbers, 05Pe5�, where Pe=ul/D, and l is a characteristic length parameter.
Some numerical schemes for solving the advective–diffusion equation, such as the popular
QUICK scheme [16], are unstable for the advection problem, Pe=� [7].

Figure 1. Interpolation in the quasi-characteristic scheme at node j, using a cubic spline and an
exponential spline interpolant to data with an abrupt change, for the pure advection problem.
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Any reasonable interpolation scheme may be used to solve Equation (6). The spatial
interpolant must (i) be simple to implement and evaluate, (ii) be accurate, (iii) be robust, (iv)
preserve the shape properties of the data, and (v) not introduce a non-physical solution.

3. INTERPOLATION SCHEMES

The use of linear interpolation to estimate the concentration at x=j from the nodal
concentrations is simply an explicit first-order upwind scheme [17]. First-order schemes are
known to introduce excessive numerical diffusion. Higher-order interpolation schemes are
preferable. Simple polynomials are not suitable for this problem because of the large number
of function values a polynomial of large degree may require. Interpolation error also increases
with increasing polynomial degree. This can be avoided by using low-order polynomials over
small sub-intervals and not over the whole computational domain. This leads to piecewise
polynomial interpolation.

There are a number of piecewise interpolation polynomials, such as Lagrange, Hermite, and
splines. Lagrange interpolants satisfy the pure interpolatory condition [18]. However, the
interpolant is only C0[xj, xj+1] and linear Lagrange interpolation is very diffusive [19,20]. A
higher-order polynomial is required to obtain a smoother interpolant over the sub-interval
[xj, xj+1]. Hermite interpolants not only fit a polynomial to the function values but also
interpolate a given number of consecutive derivatives at each computational point. The
simplest Hermite interpolant is the cubic Hermite polynomial, which demands that the function
values and the first derivative are satisfied in each sub-interval. This results in a C1[xj, xn ]
interpolant. The major advantages of cubic Hermite interpolation are that the interpolant is
simple to implement and can be constructed using only information within each sub-interval.

One of the first attempts to use cubic Hermite interpolants in a characteristic scheme for the
solution of the advective–diffusion equation is due to Holly and Preissmann [3]. Since the
nodal concentrations and their derivatives are required to fit a cubic Hermite interpolant, both
the concentration and derivatives are treated as dependent variables. Therefore, in this scheme,
the advection of the derivatives, which is an auxiliary problem, must be solved. This is
sufficient to solve the advection equation. Second and third derivatives of the interpolation
polynomial are required for the diffusion operator. These are estimated by differentiating the
interpolant. Since the interpolation polynomial used was the cubic Hermite, which is only C1,
it is not surprising that the cubic Hermite interpolant was found to provide inconsistent
estimates of the higher derivatives at the nodes, resulting in poor model performance. Yang et
al. [21] attempted to overcome this problem by using quintic Hermite interpolation. In the pure
advection case, the concentration, first and second derivatives are considered as dependent
variables. For the advective–diffusion equation, continuity of the second derivative is ensured
but continuity of the third derivative was assumed.

To avoid the problem of estimating the second and third derivatives required by the Holly
and Preissmann scheme for the solution of the advective–diffusion equation, the operator
splitting scheme has been proposed [22–25]. The advection operator is solved using the Holly
and Preissmann scheme and the diffusion operator is solved using finite differences.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 429–452



C. ZOPPOU, S. ROBERTS, AND R. J. RENKA434

Instead of fitting a C1 interpolant, which uses local information only, it is possible to fit a
C2 global interpolant, such as a cubic spline. Splines satisfy the interpolatory conditions and
continuity of derivatives at the nodes. For the C2 cubic spline, continuity of the first and
second derivative is satisfied at the nodes. These have been used by Schohl and Holly [26] to
solve the advection equation. Like cubic Hermite interpolants, extraneous inflection points
usually occur in the interpolant in the vicinity of rapid changes in the data; see, for example,
the cubic spline interpolation of the data shown in Figure 1. In all the above studies, negative
concentrations and oscillations in the solutions in the solution, which are artifacts of the
numerical scheme, could not be avoided.

It is important that properties of the data, such as positi6ity, monotonicity, or con6exity, are
preserved and that the interpolant does not introduce extraneous extrema often seen in many
standard interpolation schemes [27]. These are very desirable properties, which a numerical
scheme should also possess. Shape preserving interpolants have been developed, which attempt
to preserve the properties of the data. These include monotone cubic Hermite interpolants
[27–29], taut splines [30], and exponential splines [27,31–35].

In many practical applications, the derivatives at the computational nodes that are required
by cubic Hermite interpolants are not known and hence must be determined from the data.
How these derivatives are calculated will influence the final shape of the interpolant. Using
simple finite differences for estimating the nodal derivatives in a cubic Hermite interpolant
results in a scheme that produces overshoots and undershoots in the vicinity of steep gradients.
Strategies have been developed recently for estimating the nodal derivatives in an attempt to
avoid the production of these spurious oscillations. Methods for estimating the nodal deriva-
tives at the abscissa required by the cubic Hermite interpolant can be found in Fritsch and
Carlson [28], Fritsch and Butland [29], Akima [36], Hyman [37,38], and Huynh [39]. Hyman’s
method is designed for accuracy, while the methods of Akima, Fritsch and Carlson, Fritsch
and Butland, and Huynh are designed to preserve the shape properties of the data. All these
methods employ local information to estimate the nodal derivatives. Therefore, it is difficult
for these algorithms to distinguish between local extrema and extrema in the data. Clipping of
extrema in the data by these schemes produces results that resemble a highly diffusive
numerical scheme (see, for example, Zoppou [40]). Fritsch and Carlson’s monotone cubic
Hermite interpolation, although very efficient, introduces excessive phase errors because the
monotone preserving strategy is not symmetric.

Using only local information will produce a C1 monotone preserving cubic Hermite
interpolant, which could be used in a characteristic based scheme for the solution of the
advection equation. However, the C1 cubic Hermite interpolant will not provide continuous
second derivatives required by Equation (6). A C2 interpolant is required in this case.

Through an appropriate selection of additional nodes or knots between the data abscissa, de
Boor [30] produces a taut spline, which is a cubic spline that preserves convexity of the data.
Unfortunately, in the taut spline there is no control on the position of these additional knots.
Numerical experiments have shown that there is an abrupt change in the second derivative of
the interpolant near these additional nodes [40]. Therefore, its use in a characteristic based
scheme for the solution of the advective–diffusion equation is not recommended.
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3.1. Exponential splines

A third method of constructing a shape preserving interpolant is provided by exponential
splines, also known as tension splines. Exponential splines and interpolants can be made
arbitrarily close to the piecewise linear interpolant, while retaining two continuous derivatives,
using tension factors. A function E : [x1, xn ]�R is called an exponential interpolant with knots
xj if (i) E(x)�C2[x1, xn ]; (ii) E(xj)=yj for j=1, . . . , n ; and (iii) it minimizes the integral

%
n−1

j=1

& xj+1

xj

[E¦(x)]2+l j
2[E %(x)]2 dx (7)

for x= [xj, xj+1], j=1, . . . , n−1. The parameter lj is the non-negative tension factor, which
governs the steepness of the resulting interpolant. The function that minimizes Equation (7)
must satisfy

E %%%%(x)−l j
2E¦(x)=0 (8)

on x� [xj, xj+1], j=1, . . . , n−1. With the natural boundary conditions E¦(x1)=E¦(xn)=0,
this corresponds to an interpolation function with a linear variation of the quantity E¦(x)−
l j

2E(x), x� [xj, xj+1]. The property Equation (8) is analogous to minimizing the energy
function of a bending rod subject to the action of tensile forces. The parameters lj are
proportional to the tensile force [32].

A function E(x), where E¦(x)−l j
2E(x) is linear in each sub-interval [xj, xj+1] is obtained by

solving

E¦(x)−l j
2E(x)= [E¦(xj)−l j

2yj ]d+ [E¦(xj+1)−l j
2yj+1](1−d) (9)

where d= (x−xj)/Dx, mj=ljDx. Using condition (ii) then the solution to Equation (9) is a
unique linear combination of basis functions {1, x, elj x, e−lj x}. A local representation of E(x)
is given by Rentrop [32] as

E(x)=aj+bj(x−xj)+cj elj (x−xj )+dj e−lj (x−xj ) (10)

with constants aj, bj, cj, and dj.
The numerical properties of Equation (10) do not behave well for the limiting cases lj�0

and lj��. It is more convenient to use hyperbolic functions, which have stable numerical
properties. The exponential spline becomes [32]

E(x)=yj+1d+yj(1−d)+
y¦j+1

l j
2

�sinh(mjd)
sinh(mj)

−d
n

+
y¦j
l j

2

�sinh(mj(1−d))
sinh(mj)

(1−d)
n

(11)

where Dx=xj+1−xj. Satisfying continuity of the first derivative, obtained by differentiating
Equation (11) for the j=2, . . . , n−1 abscissa produces a definite tridiagonal system of
equations. These equations are solved for the unknown second derivative y¦j with the use of
appropriate boundary conditions.
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If lj=0, the exponential spline reduces to a linear combination of the basis functions
{1, x, x2, x3} characteristic of C2 cubic splines, which satisfy the differential equation
E %%%%(x)=0, Öx� [x1, xn ]. A piecewise linear C0 interpolant is produced when lj=�, which
preserves the positivity, monotonicity, and convexity of the data. Therefore, it is reasonable to
choose the tension factors lj to be small as possible, but sufficiently large to remove unwanted
extraneous extrema in the polynomial. The lack of a general and efficient method for selecting
the tension factors required to produce a shape preserving interpolant, which also preserves the
positivity of the data, has greatly diminished the practical application of exponential splines in
evolution problems. Cline [31] used uniform tension factors that must be specified. Rentrop
[32] describes a simple method for estimating the tension factors that eliminates oscillations in
the interpolant. Unfortunately, the method is not very robust. Rentrop and Wever [33] use an
optimization strategy to estimate the tension factors that preserve the convexity of the data
only. Wever [35] estimates the tension using a computationally expensive non-linear con-
strained optimization strategy, which will preserve the positivity of the data. Renka [27]
developed an iterative method for selecting the tension factors that will produce either a C1 or
C2 exponential interpolant that preserve certain properties of the data.

Renka relaxed the continuity requirement of the exponential interpolant. A function
E(x)�C1[x1, xn ], where E¦(x)−l j

2E(x) is linear in each sub-interval x� [x, xj+1] was sought.
Using the basis functions {1, x, coshm(lj, d), sinhm(lj, d)}, which have stable numerical prop-
erties and lj\0, the exponential interpolant is given by [22]

P(x)=yj+1−y %j+1Dxj(1−d)+
Dxj

lja1

(a1 coshm(lj(1−d))−a2 sinhm(lj(1−d))) (12)

where sinhm(z)=sinh(z)−z, coshm(z)=cosh(z)−1, a1=lj coshm(lj)(y %j+1−Dj)−
sinhm(lj)(y %j+1−y %j ), a2=lj sinh(lj)(y %j+1−Dj)−coshm(lj)(y %j+1−y %j ), a3=lj sinh(lj)−
2(coshm(lj)) and Dj= (yj+1−yj)/Dxj. Renka showed that Equation (12) is a cubic interpolant
when lj=0. The fourth-order monotonicity constrained parabolic method of Hyman [38] is
used to obtain local derivative estimates. Minimum tension factors are determined iteratively
using a nonlinear equation solver so that the interpolant satisfies locally defined properties,
such as monotonicity, convexity, or to satisfy more general bounds on function values and
derivatives in each subinterval. This will produce a monotone preserving C1 exponential
interpolant given by Equation (12), which is satisfactory for the solution of the advection
equation in characteristic based schemes. For the solutions of the advective–diffusion equa-
tion, accurate estimates of the second derivative are required. A global C2 exponential
interpolant is obtained by satisfying continuity of the second derivative at the knots. For
j=2, . . . , n−2, Equation (12) will result in n−2 linear equations for the n unknown nodal
derivatives y %j of the form

[g2(lj−1)−g1(lj−1)]y %j−1+ [g1(lj−1)−g1(lj)]y %j+ [g2(lj)−g1(lj)]y %j+1

=g2(lj−1)Dj−1+g2(lj)]Dj (13)

where
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g2(l)=
!(l/(a3Dx))[l coshm(l)−sinhm(l)] if l\0

4/Dx if l=0

and

g2(l)=
!(l2 coshm(l))/(a3Dx) if l\0

6/Dx if l=0

Two additional equations are required, which are provided by the boundary conditions. For a
C2 exponential spline interpolant, iteration alternates between (i) computing minimum tension
factors for a given set of nodal first derivatives so that certain properties, such as monotonic-
ity, convexity, and positivity of the data are preserved, and (ii) satisfying continuity of the
second derivative at the nodes by solving a system of linear equations, Equation (13) for the
nodal first derivatives using a given set of tension factors. Beginning with zero tension factors,
the iteration ceases when there is no increase in the estimated tension factors in each
sub-interval. When the nodal derivatives and tension factors are known, the C2 exponential
interpolant is given by Equation (12), which is a compromise between a shape-preserving
interpolant and a smooth spline. This approach utilized the wealth of information that exists
on obtaining nodal derivatives, which preserve the characteristics of the data. A computer
implementation of the shape preserving exponential spline interpolation is available in Renka
[41], which was used to fit a C2 exponential spline interpolant through the data given in Figure
1. Unlike the cubic splines there are no extraneous extrema introduced by the exponential
spline interpolant.

The exponential spline interpolant requires as boundary conditions, the nodal values and
either an estimate of the first or second derivative. One-sided difference schemes [42] can be
used to provide estimates of the boundary derivatives. For the first derivative to retain
third-order accuracy of the scheme in the interior, the first derivative must be approximated to
at least second-order accuracy, and the second derivative to at least first-order accuracy.
Therefore, for advection, the scheme will retain its third-order accuracy. Since the second
derivative is needed for the advective–diffusion equation, the scheme is only formally
first-order accurate, which is consistent with the time stepping.

We examine the use of exponential spline interpolation in a quasi-characteristic scheme for
the solution of the one-dimensional advective-diffusion equation.

4. ONE-DIMENSIONAL PROBLEM

The behavior of the quasi-characteristic scheme with exponential interpolation will be com-
pared with several well-known numerical schemes for modeling the one-dimensional advec-
tive–diffusion equation. The first example is the advection Pe=� of a simple test profile
given by
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c(x, t=0)=

Á
Ã
Í
Ã
Ä

100 for 05x55Dx
100 sin2(px/20Dx) for 25Dx5x545Dx
0 for 45DxBx5L=100 m

which consists of step and a sine-squared of width 20Dx. The fluid velocity u=0.5 m s−1 and
Dx=1 m, Dt=1 s; therefore, the numerical Courant number is Cr=uDt/Dx=0.5. The
simulated and analytical profile are compared at time T=100 s. The analytical solution to this
problem is simply the advection of the profile at the speed u, without deformation.

Results were obtained for this problem using (i) first-order upwind scheme [43] as shown in
Figure 2(a); (ii) second-order Lax–Wendroff scheme [44] shown in Figure 2(b); (iii) the
Warming–Beam scheme [45] illustrated if Figure 2(c); (iv) the third-order Holly and Preiss-
mann scheme [3], which is shown in Figure 2(d); (v) the fourth-order FCT [46] scheme of
Morrow and Noye [47] with Zalesak’s [48] flux limiter as shown in Figure 2(e); and (vi)
Leonard’s third-order ULTIMATE–QUICKEST scheme [49] shown in Figure 2(f). The results
obtained using quasi-characteristics with cubic splines, quintic splines [50], and exponential
interpolation are shown in Figure 3(a)–(c) respectively.

The highly diffusive first-order upwind scheme, while producing monotone preserving
results, has smeared the step function and significantly diffused the smoother sine-squared
profile. The second-order schemes, Lax–Wendroff, and Warming–Beam schemes, introduce a
dispersion that manifests itself as oscillations in the solution near abrupt changes in the
concentration profile. Form Figure 1(b) and (c) it is apparent that the dispersion errors
produce strong leading waves with the second-order Warming–Beam scheme and strong
trailing waves with the Lax–Wendroff scheme. The location of these waves is dependent on the
sign of the dispersion coefficient in the modified equivalent partial differential equation [51],
which for these schemes is a dispersion equation. The behavior of second-order schemes can
be predicted from the properties of the analytical solution to the dispersion equation, which
can be expressed in terms of Airy’s function [40]. The dispersion coefficient is negative for the
Warming–Beam scheme, resulting in leading waves, whereas it is positive for the Lax–Wen-
droff scheme, which produces trailing waves. Dispersion terms may still cause overshoots and
undershoots in the vicinity of steep gradients in higher-order schemes. This is the case for the
Holly and Preissmann scheme, which is a third-order scheme (see Figure 2(d)). The analytical
solution of the modified equivalent PDE for third-order schemes shows that oscillations should
occur both leading and trailing the discontinuity and that they are symmetrical about the
discontinuity. This has occurred in the results shown in Figure 2(d). In this scheme negative
concentrations were also obtained for the smoother sine-squared profile.

The use of flux or slope limiters in a numerical scheme has produced results that remain
positive and provide a sharp resolution of the discontinuity and the smoother profile. In Figure
2(e), the flux limiter of Zalesak has clipped the smoother sine-squared profile and its resolution
of this profile is poorer than the Holly and Preissmann scheme. The ULTIMATE–QUICK-
EST scheme, shown in Figure 2(f), produces excellent resolution of the smoother sine-squared
profile, but its resolution of the shock is not as sharp as that produced by the FCT scheme.
However, neither of these schemes resolve the discontinuity to the same accuracy as the Holly
and Preissmann scheme. Quasi-characteristic with cubic Hermite interpolation, which is a
third-order scheme, produced results that are very similar to the Holly and Preissmann scheme.
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Figure 2. Solution of the advection equation where Cr=0.5 using (a) first-order upwinding, (b)
Lax–Wendroff, (c) Warming–Beam, (d) Holly and Preissmann, (e) FCT, and (f) ULTIMATE–QUICK-

EST schemes.
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Figure 3. Solution of the advection equation where Cr=0.5 using quasi-characteristics with (a) cubic
Hermite, (b) quintic splines, (c) exponential spline interpolation, and (d) exponential spline interpolation

fitted to the integral of the concentration profile.

There is excellent resolution of the discontinuity, but the scheme introduces spurious oscilla-
tions near abrupt changes in the profile (see Figure 3(a)). The use of quintic splines in the
quasi-characteristic scheme, shown in Figure 3(b), provides the best resolution of the disconti-
nuity and smoother profile. This fifth-order scheme however, is still plagued by spurious
oscillations in the solution. These oscillations have higher amplitude and pollute a greater
region of the solution than the oscillations produced by the Holly and Preissmann scheme and
the quasi-characteristic scheme with cubic Hermite interpolation. Oscillations are avoided and
the solutions remains positive when exponential spline interpolation is used in the quasi-
characteristics scheme. The results shown in Figure 3(c) for this scheme have produced
reasonable resolution of the discontinuity. Resolution is better than the ULTIMATE–QUICK-
EST scheme, but not as accurate as either the FCT or the Holly and Preissmann schemes.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 429–452



SHAPE-PRESERVING INTERPOLATION 441

Instead of fitting an exponential interpolant to the concentration profile, it was fitted to the
integral of the concentration profile I j

n at the time nDt, which is defined as

I j
n=

& xj

0

c(x, nDt) dx

It is computationally less expensive to fit an exponential spline interpolant to the integral of
the concentration profile, which is smoother than the concentration profile. The integral of the
concentration I j

n is treated as the dependent scalar variable in Equation (6). This is similar to
the approach used by Holly and Priessmann [3], where the nodal derivatives required by the
cubic Hermite interpolant were also treated as dependent variables and it is similar to the
NIRVANA scheme [52], where the cumulated sum of the cell average values is fundamental to
this scheme. In the quasi-characteristic scheme, the cumulative nodal values are used instead
and like the NIRVANA scheme, the use of the integral of the concentration guarantees
conservation. This is not the case when the concentration is used in the quasi-characteristic
scheme.

The nodal concentrations c j
n are obtained by differentiating the interpolant that has been

fitted through the integral of the concentration profile I j
n. Therefore, for the constant

coefficient advection problem, the scheme has second-order accuracy and for the advec-
tive–diffusion equation it has first-order accuracy. The results produced by the quasi-
characteristic scheme with exponential interpoltion of the integral of the concentration profile
is shown in Figure 3(d). No new local extrema are created. The results remain positive and the
discontinuity is resolved to approximately the same accuracy of the quintic spline and the
Holly and Preissmann scheme. Overall it is a more robust numerical scheme in comparison to
all the others used in this example.

4.1. Quantifying the performance of 6arious schemes

To quantify the performance of the various methods for solving the advective–diffusion
equation, the minimum, the maximum simulated concentration, and the normalized L1-norm
between exact and simulated profile have been calculated for another test profile. The
normalized L1-norm is defined as

L1=
%
k

j=1

�cj−C(xj)�

%
k

j=1

�C(xj)�
(14)

in which the first moment of the approximate solution cj, evaluated using the solution obtained
at time t at all the k computational nodes in the domain, j=1, . . . , k, is normalized by the
corresponding exact solution C(xj).

The concentration profile in the second example is given by
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Figure 4. Initial exact and quasi-characteristic scheme with exponential spline interpolation solution to
the advection problem, where Cr=0.25.

c(x, t=0)=
!100 for 05x545Dx

0 for 45DxBx5L=200 m
(15)

In each numerical scheme Dt=1 s, Dx=1 m, and u=0.25 m s−1; therefore, Cr=0.25. The
solution is sought at time T=200 s, after which the concentration profile has traveled to the
location x=95 m without deformation. The initial profile the exact solution and the results
obtained from the quasi-characteristic scheme using exponential spline interoplation are
illustrated in Figure 4.

The minimum, cmin, maximum cmax, and L1-norm, defined by Equation (14), were evaluated
for all the numerical schemes used in the first example. These are given in Table I along with
the relative computational time required by each scheme.

Table I. Minimum, maximum, L1-norm, and relative execution time for the solution of the one-dimen-
sional advection equation of a step profile for various schemes.

Maximum, RelativeL1Numerical scheme Minimum,
CPU timecmin cmax

0.000 100.000 0.508043×10−1 1.000First-order upwinding
1.165124.678 0.397442×10−10.000Lax–Wendroff

−19.534 100.000 0.354703×10−1 1.165Warming–Beam
1.6710.969364×10−2103.500−6.249Holly and Preissmann

0.000 100.000 0.804587×10−2 4.778FCT
0.000 100.000 0.123384×10−1 1.603ULTIMATE–QUICKEST

Characteristics with
−3.573 109.137 0.113015×10−1 4.603Cubic Hermite

21.3420.983326×10−2109.831−4.941Quintic splines
100.000 0.102501×10−1Exponential spline 153.6410.000
100.000 0.705714×10−2Integral 59.0350.000
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Only numerical schemes that use some form of flux or slope limiter avoid the generation of
spurious extrema. All the other schemes introduce oscillations in the solution resulting in
negative concentrations and spurious extrema is the solution. This is not the case for the
first-order scheme, which is the least costly scheme, but is also the least accurate because it is
a highly diffusive scheme. The cost associated with the FCT scheme is not unexpected. In this
scheme, the problem is solved using two numerical schemes. Compared with cubic Hermite
interpolants, the use of higher-order quintic spline interpolation in the quasi-characteristic
scheme has not significantly improved the accuracy of the scheme. There seems to be no
advantage in using higher-order interpolation, such as quintic splines, in a characteristic based
scheme, unless some form of shape-preserving strategy can be employed. Satisfactory results
can be obtained using cubic intepolants. The use of exponential spline interoplation has
preserved the properties of the data at a cost. It is computationally the most expensive scheme.
However, it is not plagued with the obvious problems associated with the Holly and
Preissmann and quasi-characteristic scheme using cubic Hermite interpolation or quintic
splines. A significant improvement in both accuracy and computational effort was obtained
when an exponential interpolant was fitted to the integral of the concentration profile in the
quasi-characteristic scheme. It is the most accurate scheme, providing results exceeding the
accuracy of both the fourth-order FCT scheme and the fifth-order quintic spline scheme. More
importantly, it preserves the properties of the exact solution.

The computational effort required to solve the quasi-characteristic based scheme is at least
an order of magnitude greater than many of the other schemes. However, with the exponential
growth in computer speed, the time required to solve a numerical scheme is becoming less
relevant in the choice of a numerical scheme. The accuracy of a numerical scheme cannot be
improved by computer resources alone. Therefore, the criterion used to assess the accuracy of
the new scheme is its accuracy compared with a number of other well-known schemes and not
only on the computational time required to solve the numerical scheme.

The third example is solved using first-order upwind, second-order Lax–Wendroff, the
Holly and Preissman scheme, the FCT scheme, and quasi-characteristics with cubic Hermite
quintic splines, and the exponential spline interpolant fitted to both the nodal concentrations
and to the integral of the concentration profile. The concentration profile is given by

c(x, t=0)=
!100 for 05x5x0

0 for x0Bx5L=200 m

In each numerical scheme Dt=1 s, Dx=1 m, and u=0.5 m s−1; therefore, Cr=0.5, x0=5,
D=0.1 and 0.01. This satisfies the stability constraints for all schemes and Pe=5 and 50,
where Pe=uDx/D and Dx is the grid spacing. The solution is sought at time T=100 s after
which the concentrations profile is given by [4]

C(x, t)=
c0

2
erfc

�x−ut−x0

2
Dt

n
+

c0

2
exp

�u(x−x0)
D

n c0

2
erfc

�x+ut−x0

2
Dt

n
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When Pe"�, diffusion may attenuate the oscillations that are introduced in a numerical
scheme. Therefore, only the L1-norm is provided as a measure of the performance of a
numerical scheme when Pe"�. These have been provided in Table II for Pe=5, and Table
III for Pe=50.

Although most of the schemes produced results that were indistinguishable from the
analytical solution for Pe=5, this was not the situation for the solution of the advective–dif-
fusion equation for Pe=50. Some of these schemes introduce non-physical results. This is
evident from the L1-norm given in Tables II and III. When Pe=5, the concentration profile
is relatively smooth. All the schemes are free from oscillations in the solution and provide
consistent values for the L1-norm. This is also the case for the higher-order schemes when
Pe=50. The only exceptions are the first-order upwinding and the quasi-characteristic scheme
using exponential spline interpolants fitted to the integral of the concentration profile. The
first-order scheme introduces numerical diffusion, which dominates the large physical diffusion

Table II. The L1-norm and relative execution time for the solution of the
one-dimensional advective–diffusion equation of a step profile using various

schemes with Pe=5.

L1 Relative CPUNumerical scheme
time

First-order upwinding 0.181114×10−1 1.000
0.297914×10−2 1.054Lax–Wendroff

Holly and Preissmann 0.297016×10−2 1.374
2.6510.297915×10−2FCT

Quasi-characteristics with
Cubic Hermite 0.297915×10−2 2.566
Quintic splines 0.297919×10−2 9.048

42.089Exponential spline 0.297915×10−2

Integral 0.197630×10−2 16.594

Table III. The L1-norm and relative execution time for the solution of the
one-dimensional advective–diffusion equation of a step profile using various

schemes with Pe=50.

Numerical scheme L1 Relative CPU
time

0.302424×10−1First-order upwinding 1.000
1.0540.145948×10−1Lax–Wendroff
1.377Holly and Preissmann 0.519665×10−2

2.5900.500343×10−2FCT

Quasi-characteristics with
Cubic Hermite 0.528221×10−2 2.536

0.498490×10−2Quintic splines 8.954
Exponential spline 0.498756×10−2 48.275

18.6740.115914×10−2Integral
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in this problem. Oscillations are produced by the dissipative Lax–Wendroff scheme when
Pe=50. The use of the exponential spline interpolation in the quasi-characteristic scheme
produces results that are competitive to other schemes, which employ some form of flux or
slope limiter. Unfortunately, it is the most expensive scheme. Fitting an exponential inter-
polant to the integral of the concentration profile produces a numerical scheme that is
consistently more accurate for the full range of Peclet numbers than all the other schemes used
in this study. However, this scheme is also computationally expensive.

From the above examples, the use of quasi-characteristics with exponential interpolants
fitted to the integral of the concentration profile, consistently provides the most accurate
results. Although it is computationally expensive, it is a robust scheme.

5. TWO-DIMENSIONAL PROBLEM

The transport of a scalar quantity in a two-dimensional steady velocity field with speed
v= (u, 6) is given by

(c
(t

+u
(c
(x

+6
(c
(y

=Dx

(2c
(x2+Dy

(2c
(y2 , 05x5Lx, 05y5Ly, t� [0, T ] (16)

in which y is the second Cartesian co-ordinate direction and Dx, Dy are the constant diffusion
coefficient is the x- and y-directions respectively. It has been demonstrated in the one-
dimensional examples that it is when Pe=�, that numerical schemes will have difficulties.
Therefore, in the two-dimensional example only Pe=� will be considered. The analytical
solution to this equation is simply the translation of the initial profile by the amount (uT, 6T)
without deformation.

Fractional stepping could be employed to solve the two-dimensional problem [53]. Equation
(16) can be written in the form of Equation (2) in which the linear differential operator for the
two dimensional problem is

C=CD+CA

where CD=LDx
+LDy

=Dx((2/(x2)+Dy((2/(y2) and CA=LAx
+LAy

= −u((/(x)−6((/
(y). Similar to the one-dimensional case, the exact solution is given by

cn+1=exp[Dt(CD+CA)]cn

The exponential term can be approximated to the desired order of accuracy. To first-order
accuracy

cn+1=exp(DtCD) exp(DtCA)cn

Recalling that the quantities exp(LAx
) and exp(LAy

) are shift operators, then the analytical
solution to the two dimensional problem is simply
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Figure 5. The initial (a) and exact (b) solution to the advection equation in two-dimensional flow.

cn+1=exp
�

DxDt
(2

(x2

�
exp

�
DyDt

(2

(y2

�
cj

n

where j=x−uDt, y−6Dt. The first order quasi-characteristic formulation of the two-
dimensional advective–diffusion equation is

c i, j
n+1=cji, j

n +DxDt
(2cji

n

(x2 +DyDt
(2cjj

n

(y2 (17)

Any bi-dimensional interpolation scheme could be used to solve Equation (17). Alternatively,
the solution can be obtained by solving the one-dimensional equations

c̄ i, j
n+1=cjj

n +DyDt
(2cjj

n

(y2 (18)

where jj=xi, yj−6Dt followed by

c i, j
n+1= c̄ji

n+1+DxDt
(2c̄ji

n+1

(x2 (19)

where ji=xi−uDt, yj. The process consists of solving a one-dimensional problem in the x-
and y-directions consecutively. Any suitable scheme can be used in the individual steps. As
pointed out by the reviewer (Leonard) for uniform velocity fields in the x- and y-directions,
the quasi-characteristic scheme using the integral of the concentration profile is conservative
and constancy preserving. For more general solenoidal flow it is only conservative. Leonard et
al. [54] suggest strategies so that a numerical scheme that uses operator splitting is both
conservative and constancy preserving in solenoidal flow.

The two-dimensional problem consists of the pure advection of a rectangular parallelepiped.
On the domain [1, 50]× [1, 50], with a uniform grid size Dx=Dy=1 m, the parallelepiped is
centered at (11, 11) with width 10Dx and 10Dy. Its height is 10. The initial profile is shown in
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Figure 6. Advection in two-dimensional flow solved with Cr=0.1 using naive finite differences schemes;
(a) first-order upwinding, (b) Lax–Wendroff, (c) Warming–Beam, and (d) minimax scheme.

Figure 5(a). This profile is transported by the steady uniform velocity field v= (u, 6), where
u=6=0.1 m s−1 to the location (30, 30) after T=200 s. The exact solution to this problem
is illustrated in Figure 5(b). In all the numerical schemes a computational time step Dt=1 s
was adopted. This provides a component Courant number of Cr=0.1, which satisfies the
stability constraints imposed on these schemes.

The two-dimensional test problem is solved using operator splitting with the first-order
upwind scheme, which is shown in Figure 6(a); the second-order Lax–Wendroff, the
Warming–Beam, and the minimax characteristics [55] schemes, which are shown in Figure
6(b)–(d) respectively; van Leer’s second-order monotone upwind scheme [56], shown is Figure
7(a); Leonard’s third-order upwind SHARP scheme [57], illustrated in Figure 7(b); and Roe’s
second-order monotone upwind scheme [58], where the flux is limited using Roe’s superbee
limiter, shown in Figure 7(c) The results of these schemes are compared with the results
obtained from the quasi-characteristic scheme using an exponential spline interpolant fitted to
the concentration, which are shown in Figure 7(d), and the exponential spline interpolant fitted
to the integral of the concentration profile, shown in Figure 7(e).

The L1-norm between the analytical and numerical solution of the test case has been
calculated for all these schemes. These are given for the test problem in Table IV along with
the maximum, the minimum computed concentration, and the computational time required by
each scheme.
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Figure 7. Advection in two-dimensional flow solved with Cr=0.1 using slope or flux limiter schemes; (a)
van Leer, (b) SHARP, (c) Roe, (d) quasi-characteristics with an exponential spline interpolant fitted to
the concentration, and (e) quasi-characteristics with an exponential spline interpolant fitted to the integral

of the concentration profile.

The highly diffusive first-order upwind scheme has produced a profile that is smeared and
the peak concentration is attenuated. The solution does not contain oscillations, unlike the
second-order Lax–Wendroff, the Warming–Beam, and the minimax schemes. Similar to
the one-dimensional cases, the Lax–Wendroff scheme produces trailing waves and the
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Table IV. Minimum, maximum, L1-norm, and relative execution time for the solution of the two-
dimensional advection equation of a rectangular profile using various schemes.

Minimum, Relative CPUMaximum,Numerical scheme L1

cmin cmax time

0.000 6.517 1.033294 1.000First-order upwindig
−3.553 15.895Lax–Wendroff 1.130739 1.388

Warming–Beam −3.088 15.481 0.875083 1.333
Minimax −0.845 11.613 0.459514 3.961

0.000 9.930van Leer 0.441003 3.467
−0.056 10.056 0.379688SHARP 5.855

0.000 10.000 0.229654 6.111Roe

Characteristics with
0.000 10.000 0.256439 171/031Exponential spline
0.000 10.000Integral 0.166308 104.389

Warming–Beam scheme introduces leading waves. The minimax scheme also produces strong
leading waves and negative concentrations trailing the profile. All these second-order schemes
overestimate the peak concentrations and produce negative concentrations. Overall, they are
poor schemes for the solution of the advection equation.

The simulated profile is significantly improved with the use of flux limiters in a numerical
scheme or by using higher-order schemes. The second-order upwind scheme of van Leer has
not produced negative concentrations, is monotone, and has not introduced extraneous
extrema but has introduced some smearing of the profile. The SHARP scheme although
producing an improvement in the L1-norm in comparison with the van Leer scheme, has
produced negative concentrations and overestimates the maximum concentration. These results
have been improved using Roe’s upwind scheme. It has produced results that have preserved
the properties of the exact solution. The maximum concentration has not been overestimated
and the solution remains positive. It has captured the discontinuities in the profile with very
little smearing of the profile.

The quasi-characteristic scheme using an exponential spline interpolant fitted to the concen-
tration has also preserved the properties of the exact solution. Although it is not as accurate
as the Roe upwinding scheme, because it introduces slightly more smearing of the discontinu-
ities, it is one of the most accurate schemes used in this example. The most accurate scheme
is the quasi-characteristics with an exponential spline interpolant fitted to the integral of the
concentration profile. This scheme has produced the sharpest resolution of the discontinuity,
which has been resolved over only four computational grid points.

Using exponential splin interoplation in a quasi-characteristic scheme results in a computa-
tionally expensive scheme, requiring at least and order of magnitude more computational
effort than any other scheme. The computational effort reduces as Pe decrease and only
slightly if the exponential spline interpolant is fitted to the integral of the concentration profile.
The quasi-characteristic scheme, however, can be used to solve the advective–diffusion and
advection equations. This is not the case for van Leer’s scheme and Roe’s scheme, which are
restricted in this case to the advection equation.
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6. CONCLUSIONS

Numerical schemes for the solution of the advective–diffusion which are based on the method
of characteristics rely on some form of interpolation. These schemes are well known in
meteorological modeling and in civil engineering applications. Unfortunately, many of these
schemes employ interpolation schemes that do not preserve the properties of the solution or
are highly diffusive. Like many finite difference schemes, they introduce oscillations in the
solution near sharp changes in the profile.

A numerical scheme based on quasi-characteristics, which only requires spatial interpolation,
is used to solve the advective–diffusion equation. In this scheme, shape preserving exponential
spline interpolation is used. An iterative procedure is used to estimate the tension factors and
to produce estimates of the nodal derivatives, which preserve certain properties of the data,
required by the C2 exponential spline interpolation. The exponential spline interpolant is
accurate, robust and preserves the shape properties of the data. The accuracy of the
quasi-characteristic method with shape preserving exponential spline interpolation has been
demonstrated by solving the advective–diffusion equation in one and two dimensions.
Although the construction of the shape-preserving interpolation scheme is computationally
expensive, the numerical scheme is robust and produces sharp resolution of steep gradients and
solutions free from extraneous oscillation. The computational effort required to solve the
quasi-characteristic based scheme is at least an order of magnitude greater than other
well-known schemes. This can be reduced by fitting the exponential spline interpolant to the
integral of the concentration profile. The nodal concentrations are obtained by differentiating
the interpolant. This produced a more accurate numerical scheme. The results indicate that
there are advantages in using exponential spline interpolation in characteristic based numerical
schemes.
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